RE-EXAMINATION ON BROMINATION OF SUBSTITUTED BIPHENYLENES. FORMATION OF BENZOCYCLOOCTATETRAENE DERIVATIVES

Hiroto KIDOKORO, Masaru SATO, and Seiji EBINE * Department of Chemistry, Saitama University, Urawa, Saitama 338

The bromination products of 2-methoxy- and 2-acetamido-3-bromobiphenylenes were not the biphenyl derivatives $(\underline{3a})$ and $(\underline{3b})$, which were previously assigned by McOmie et al., but the benzocyclo-octatetraene derivatives (2a) and (2b), respectively.

Bromination of biphenylene and its derivatives is a fundamental reaction in biphenylene chemistry. Biphenylene itself was brominated to give benzocyclo-octatetraene derivatives and some other addition products. $^{1-3}$ On the other hand, it was reported that 2-methoxy- $\left(\underline{1a}\right)^4$ and 2-acetamido-3-bromobiphenylenes $\left(\underline{1b}\right)^5$ were brominated to give biphenyl derivatives. To accomodate these inconsistencies, we re-examined bromination of 1a and 1b.

3-Bromo-2-methoxybiphenylene ($\underline{1a}$) was brominated in dichloromethane to give tribromo compound 2a, 6 mp 118-119 °C, in 70% yield. The same compound was previously prepared on bromination of $\underline{\mathsf{la}}$ in acetic acid and assigned by <code>McOmie</code> and co-workers as 4,6,2'-tribromo-3-methoxybiphenyl ($\frac{3a}{2}$) by its IR and UV spectra. However, its NMR spectrum showed two olefinic doublets (J=1.2 Hz) at δ 6.53 and 6.66, which were very similar to that of 3,8-dibromobenzocyclooctatetraene ($\underline{5}$) ($\boldsymbol{\delta}$ 6.51, $J_{4.7}=1.6$ Hz). The UV spectrum of 2a resembles that of 5 rather than 2,2'dibromobiphenyl. In addition, 2a was converted with trifluoroacetic acid to 3,6,8tribromo-4,5-benzocycloocta-2,4,6-trien-1-one $(4)^6$ in high yield, whose structure was assigned by its spectral data. IR(KBr): 1680 cm^{-1} . PMR(CDCl₃): δ 4.81 (d, 1H, J=9.6 Hz, H-8), 6.73 (d, 1H, J=9.6 Hz, H-7), 7.18 (s, 1H, H-2), and 7.2-8.0 (m, 4H, Ar-H). $CMR(CDCl_3)$: **8** 53.5 (C-8) and 185.2 (C-1). The X-ray crystallographic analysis confirmed that $\frac{4}{2}$ had a benzocyclooctatrienone framework. 7 On the basis of these data the tribromo compound 2a should be assigned not to 4,6,2'-tribromo-3-methoxybiphenyl (3a) but 3,6,8-tribromo-5-methoxybenzocyclooctatetraene. Such type of preferentialring-opening was also confirmed by bromination of 3,6-dibromo-2,7-dimethoxybiphenylene and 3-bromo-1,2-dimethoxybiphenylene to give the corresponding benzocyclooctatetraene derivatives $\underline{6}^6$ and $\underline{7}^6$ in 89 and 36% yields, respectively. The structures of $\underline{6}$ and $\underline{7}$ were assigned by UV and NMR spectral. analogy to 2.

The bromination of 3-bromo-2-acetamidobiphenylene ($\underline{1b}$) in dichloromethane at room temperature gave colorless needles $\underline{2b}$, mp 156-157 °C, in nearly quantitative yield. $\underline{2b}$ showed the same mp and UV spectra as those previously obtained by bromination of $\underline{1b}$ in acetic acid at 80 °C and assigned to 4,6,2'-tribromo-3-acetamido-biphenyl ($\underline{3b}$) by Baker et al. PMR(CDCl $_3$): δ 2.03 (s, 3H, CH $_3$), 6.72 (d, 1H, J=

1.3 Hz), 6.94 (d, 1H, J=1.3 Hz), 7.3 (broad s, 1H), 7.44 (s, 4H, Ar-H). These PMR data are similar to those of $\underline{2a}$ and $\underline{5}$. Similarly to $\underline{2a}$, $\underline{2b}$ was hydrolyzed in boiling ethanol with 48% hydrobromic acid to tribromo ketone $\underline{4}$ in 80% yield. These facts proved that $\underline{2b}$ should be assigned to 3,6,8-tribromo-5-acetamidobenzocyclo-octatetraene. The compound $\underline{3b}$, proposed by Baker et al. $\underline{5}$ to the bromination product of $\underline{1b}$, was actually prepared in the following manner. The reaction of mnitrobenzenediazonium tetrafluoroborate with bromobenzene in the presence of 18-crown-68 gave 2'-bromo- and 4'-bromo-3-nitrobiphenyl in good yield. The former (separated in 13% yield) was converted to $\underline{3b}$, colorless needles, mp 117-118°C, according to Baker et al. $\underline{5}$ PMR(CDCl $_3$): $\underline{5}$ 2.26 (s, 3H, COCH $_3$), 7.15-7.55 (m, 4H, H-3'-H-6'), 7.70 (broad s, 1H, NH), 7.97 (s, 1H, H-2), and 8.45 (s, 1H, H-5). MS (75 eV): m/e 445 (M $^+$, 18%), 447 (M $^+$ +2, 40%), 449 (M $^+$ +4, 44%), 451 (M $^+$ +6, 14%). $\underline{3b}$ gave IR spectrum different from $\underline{2b}$. Thus, $\underline{2b}$ was unequivocally proved not to be $\underline{3b}$. The bromination of $\underline{1}$ to $\underline{2}$ may be illustrated as in the Scheme.

Acknowledgment: The authors greatly appreciate the measurements of PMR and CMR spectra and X-ray analysis of $\underline{4}$ for Central Research Institute of Sankyo. This work was supported by a Grant-in Aid for Scientific Research No.554138 from the Ministry of Education, Science and Culture of Japan.

References

- 1) W. Baker, J. W. Barton, and J. F. W. McOmie, J. Chem. Soc., 1958, 2666.
- 2) J. W. Barton, D. E. Henn, K. A. Mclaughlam, and J. F. W. McOmie, J. Chem. Soc., 1964, 1622.
- 3) J. W. Barton and K. E. Whitaker, J. Chem. Soc. (C), 1968, 28.
- 4) J. M. Blatchley, D. V. Gardner, J. F. W. McOmie, and M. L. Watts, J. Chem. Soc. (C), 1968, 1545.
- 5) W. Baker, J. F. W. McOmie, D. R. Preston, and V. Rogers, J. Chem. Soc., <u>1960</u>, 414.
- 6) All new compounds have satisfactory micro-analyses.
- 7) The details of the X-ray analysis of $\underline{4}$ will be soon published elsewhere.
- 8) S. H. Korzeniowski, L. Blum, and G. W. Gokel, Tetrahedron Lett., 1977, 1871.

(Received June 25, 1981)